2G ethanol from the whole sugarcane lignocellulosic biomass
نویسندگان
چکیده
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. RESULTS The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. CONCLUSIONS Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.
منابع مشابه
Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock
BACKGROUND Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol pr...
متن کاملTechno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons
BACKGROUND Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current an...
متن کاملFermentative Production of Value-Added Products from Lignocellulosic Biomass
Bioconversion of lignocellulosic biomass (agro residues, grasses, wood, weed, dedicated energy crops and others) into biofuels and other value-added products offers numerous geopolitical, environmental, and strategic benefits. Ligno-cellulosic biomass (LB) is the most abundant renewable organic resources (∼200 billion tons annually) on earth that are readily available for conversion to biofuels...
متن کاملThe capability of endophytic fungi for production of hemicellulases and related enzymes
BACKGROUND There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulol...
متن کاملEnhanced saccharification of lignocellulosic agricultural biomass and increased bioethanol titre using acclimated Clostridium thermocellum DSM1313
Consolidated bioprocess assures an efficient lignocellulosic conversion to fermentable sugars and subsequently to bioethanol. Such a single-step hydrolysis and anaerobic fermentation was achieved with acclimated Clostridium thermocellum DSM 1313 on different mildly pre-treated agricultural lignocellulosic residues without any additional enzymes/and strains. Acclimation was achieved by serially ...
متن کامل